A new species of the genus Quasipan (Anura, Ranidae, Dicroglossinae) from northern Vietnam

Alain Dubors \& Annemarie Ohler
Reptiles ei Amplubiens. UMR 7205 OSEB.
Département de Systematique et Evolution, Museum naltonal d'Histore natueelle. 25 rue Cuver, CP 30, 75005 Paris, France
<adubow (umnhn.fr>, <ohler (a mnhn fr>

Abstract

A new species of the genus Quasipaa from northern Vietnam is described and compared with four related species from China: Quasipaa spinosa, Q. juulongensis. Q. exilispinosa and Q. courtoisi, the latter being here confirmed, on morphometric grounds, as a distinct species. Q. courtoisi differs from the four other species by measurements concerning the hands, feet and head. The new species is further distinguished from Q. exilispinosa by its larger webbing. It is a sibling species of Q. spinosa from which it differs by a higher number of nuptial spines on the prepollex and finger I of breading males.

Introduction

During hus travels of exploration of the Chinese Empire, the father Armand David discovered a large frog living in torrents of the mountains in the surroundings of Jinjuang (Jiangxi Sheng), the breeding males of which emit a strong and loud call and have the chest and fingers covered with black horny spines. He described it as new on two occastons, first (David, 1872.76) as Ramu lairuns, a nomen which later proved invalud, beng a juntor primary homonym, and later (DAvid, 1875; 253) as Rana ymosa. This species is stll known under the later specific nomen, but it is now referred to the genus Quasipala Dubois. 1992 (Ranidae, Dicroglossinae, Paini; see Jiang et al., 2005; Ohlir \& Dubois, 2006, Frost e! al, 2006; Che et al., 2009).

Although many nomira have been proposed in the literature for species of the genus Quesipaa, Ohlir \& Dubois (2006) only recognized II valid species in this genus. Among these, two informal groups can be distinguished by the aspect of their warts on the mid-dorsal skin a group of seven species with longitudınally elongate, regularly arranged warts, some of which are quite wide and prominent, and a group of four spectes with smatler warts, not very prominent, rounded or slightly elongate, or if elongate not wide and regularly arranged on
back. The latter group can be provistonatly destgnated as "Quasipua sensu stricto", as it includes Rana spinosa, the type-species of Quaspaa, whereas for the former group the generic nomen Eripta Dubols, 1992 (type-species Rana fasicuitspina Inger, 1970) would be available if it proved holophyletic and had to be recognized formally as a subgenus. The four species of "Qutapad sensu stricto" recognized by Ohler \& Dubors (2006) include three species recognuzed by all recent authors (e.g., FiI, 1999; FEI et al., 2006; Che et al., 2009), i.e. Quastpact eviorpmosa (Liu \& Hu, 1975), Quasipad pulongensus (Huang \& Liu, 1985) and Quasipata spmosu (David, 1875), and a speces, Quasipaa courtoist (Angel, 1922), usually considered as a synonym of the later. Recent molecular data (Che et al., 2009) suggest that additional species probably require recognition in this group.

Most species of Quaspora are endemic to Chana, but a few of them occur in the eastern part of the Indochnese peninsula (Cambodia, Laos. Tharland and Vietnam). One of them was reported under the nomen Runa spinosa spinosa by Bourret (1937, 1942) on the basis of 14 adult specimens collected by him on the Mau Son (then spelt Mao-Son) in northern Vietnam. Six of these specimens (5 males, 1 female) are still kept in the collections of the Paris Museum under the numbers MNHN 19380001-0006. A seventh specimen from the same series was transferred to the Edward H. Taylor collection and later to the Field Museum in Cheago, where it is still kept under the number FMNH 123883 (Alan Resetar, personal communication). Two additional specimens of the same species from Mau Son are known to exist in collections. The first additional one was collected in 1903 by H Fruhstorfer between 915 and 1220 m ($3000-4000 \mathrm{ft}$) it the Mau Son, along with several other frog species (Boulinglr, 1903; Bourret, 1942' 13) It was identıfied as Rana spinosa by Boulingir (1920.75). It is stull kept in the Natural History Museum collecton in London under the number BMNH 1903,7.2.26. Finally, a second addtional specimen was part of the collection of herpetological specimens made by J Delacour and W. P. Lowe in Tonkin and Annam in 1926 and 1927: this specmen, stated to be from Lang Son, is also probably from Mau Son (Bot rrit, 1942 291), It was identified by H. W, Parker as Rana duhourreymond and reported under this nomen by Angrl (1928). It is still present in the Paris Museum collection under the number MNHN 1928.0025.

Although by theu overall aspect these Mau Son specmens indeed resemble Chinese specimens of Quasipta spmowa, they differ from them in a few respects, as discussed below. We used morphometric data to compare them with numerous Chmese specimens referred to the four species of "Quasipata sensu stricto". This analysis revealed constant and significant differences between the Vietnamese specimens and all Chinese specimens, and we consider that they demonstrate the existence of a distinct species in Vietnam, which is described and named here.

Material and methods

Appendix I provides a list of the specomens of "Quavpaa sensu stricto" exammed and measured for this study, along with the abbrevtations used to designate the collections where they are kept. Specimens were sexed using their external characters (in the case of adult breeding males) or through a slight lateral incision in order to see one of the gonad. All
specimens examined in this study were adult, according to the criteria of Dubois (1976: 3(-33).

Appendix 2 provides a list and descriptions of the measurements taken on these specimens. Measurements were obtaned with a slide calhper to the nearest 0.1 mm , or, for values below 5 mm , with an ocular micrometer to the nearest 0.01 mm . For univariate comparisons between samples, all measurements except snout-vent length (SVL) were transformed in ratio to SVL, expressed in per thousands (\%). Subgroups were composed according to two possible criteria: taxonomic allocation and sex.

Univariate morphometric comparisons between samples were made using the nonparametric Mann-Whitney U test (ZAR, 1984). Multivariate factor analyses were performed using the Princopal Component Analysis (PCA) with varimax rotation as implemented in the software SPSS (Anonymous, 1999. 426). According to the Kaiser criterion, eigenfactors larger than 1 where retaned (Norusis, 1992) Factors of PCA were plotied as scatterplots indicating species allocation. To examine effects of species delmitation on the principal component scores, factonal ANOVA were performed Catculations and statistical analyses were realised using SPSS statistical software (Norusis, 1992)

The holophoront (holotype) of the new species was descrabed in detail using the same format and methodology as in several of our previous works on Asian anurans, in particular ranids (Ohler \& Dubois, 1999; Dubois \& Ohler. 2000, 2001, 2005; Dubois et al., 2001. Veith et al , 2001; OHlfR et al., 2002) Some of the terms used below (holophoront, hypodigm, onymotope) were defined elsewhere, and reasons were provided for using them (Dubors, 2000, 2005). The traditional terms of equivalent meaning are indicated below on first use between parentheses.

Taxonomy

Quasipaa acanthophora sp. noy

(fig. 1)
Etymology of specific nomen. From the Greek afovitren "spine" and pspя, "I bear" This nomen is the Greek equivalent of spmosa in Latin.
Holophoront (holotype) MNHN 1938.0001 (ex LZUH Z.108), adult male. SVL 1017 mm . Onymotope (rype localty) - Mau Son ($21^{\circ} 51^{\circ} \mathrm{N}, 106^{\circ} 58^{\prime} \mathrm{E}$), Lang Son province, Vietnam.

Other specumens of the hypodggm (paratvpes). MNHN 1938.0002 (ex LZUH Z 107), 19380003 (ex LZUH Z. 106), 19380004 (ex LZUHZ.115) and 1938.0006 (ex LZUH Z 109). and FMNH 123883 (ex LZUH Z.112), 5 8, SVL $83.0-995 \mathrm{~mm}$; and MNHN 19380005 (ex LZUH Z.113), 1 \%. SVL 81.0 mm ; all collected by Rene Bourret in the same locality as the holophoront. MNHN 1928.0025, 1 б, SVL 790 mm , collected in 1926 or 1927 by Jean Delacour and Willoughby Prescott Lowe in the same region. BMNH 1903.7.2.26, I young δ, SVL 61.3 mm , collected in 1903 by Hans Frühstorfer on the same mountan. Seven additonal

Fig I Qitatpettctianthe horatsp. not, holophoront MNHN 19380001 , adult male, SVL 1017 mm (a) Dorsal yew, (b) ventral vicw; (c) right lateral vew of head: (d) ventral vicw of rught foot
specmens (LZUHB 103-105, B. 107, Z. 1t0-111, Z.116) were reported by Boukrer (1942: 26) liom the same localay and probably belonged in the same species. We have been unable until now to keate any of them in current collections, but some might be rediscovered in the future Howerer, because we have been anable to examine them, we refran to formally desgenate thern as partatypes of the new species.
Dowraphon of the holophoront (A) Size and general aspect. - (1) Specmen of lange saze (SVL 101.7 mm), body rather stout.
(B) Head (2) Head rather farge, wder (HW 41.0 mm) than long (HL 38.5 mm ; MN 32.2 mm ; MFE 25.1 mm . MBE 17.2 mm), tlat above (3) Suout rounded, slightly protruding.
its length (SL 14.4 mm) longer than horizontal dameter of eye (EL 11.2 mm). (4) Canthus rostralis indistinct, loreal region concave, flared in cross section (5) Interorbital space flat, smaller (IUE 8.1 mm) than upper eyeld (UEW 9.0 mm) and internarial distance (IN 100 mm); distance between front of eyes (IFE 15.3 mm) about three fifth of distance between back of eyes (IBE 268 mm). (6) Nostrils oval, with flap of skin laterally, closer to eye (EN 68 mm) than to tip of snout (NS 7.8 mm). (7) Pupl indistinct (8) Tympanum indistinct (9) Pineal ocellus present, between anterior borders of eyes. (10) Vomerine ridges present, bearing numerous small teeth $(n-10)$, between choanae, with an angle of 60° relative to body axas, as close to choanae as to each other, longer than distance between them. (11) Tongue large. cordate, emarginated, median lingual process absent; tooth like projection on maxilla absent.
(C) Forelımbs. (12) Arm rather short (FLL 25.9 mm). strong. shorter than hard (HAL 25.2 mm), distinctly enlarged. (13) Finger I rather long and strong: finger II rather short, rather strong; finger III rather long and strong (TFL 128 mm); finger IV short, relatively thin. (14) Relative length of fingers, shortest to longest II $<$ I $<$ IV $<$ [II (15) Tips of fingers rounded, slightly enlarged, without discs. (16) Fingers II and III with dermal fringes; webbing absent (17) Subartucular tubercles promment, rounded, single, all present. (18) Prepoilex oval, prominent, two oval, distinct palmar tubercles; supernumerary tubercles absent.
(D) Hindlimbs - (19) Shank three times longer (TL 535 mm) than wide (TW 188 mm), about as long as thigh (FL 52.8 mm) and distance from base of internal metatarsal lubercle to tip of toe IV (FOL 522 mm). (20) Toes rather short and thin; toe IV (FTL 28.9 mm) more than one third of distance from base of tarsus to thp of toe IV (TFOL 72.1 mm). (21) Relative length of toes, shortest to longest: I $<$ II $<\mathrm{V}<$ III $<$ IV. (22) Tips of toes rounded. distinctly enlarged, without discs. (23) Webbing complete: $10-0 \| 10-01 I I 0$ 0IV 0 0V(WTF 16.1 mm : WFF 14.5 mm , WI 14.4 mm , WII 116 mm). (24) Dermal fruge along toe V well developed. from tup of toe to bass of metdarsus. (25) Subarticular tubereles very prominent, oval, smple, all present (26) Inner metatarsal tubercle long. prominent: its length (1MT 83 mml 17 times in length of toe I (ITL 14.2 mm). (27) Tarsal ridge present. two thuds of distal parts of tarsus. (28) Outer metatarsal tubercle, supernumerary tubercles and tarsal tubercle absent
(E) Skin (29) Dorbal and lateral parts of head and dorsal part of back shagreened wath regularly disposed glandular warts on back: upper part of flanks shagreened with elongatled glandular warts, lower part of flanks with foldings. (30) Dorsolateral folds absent: lateral line system absent; "fejervaryan line" absent; supratympanic fold promment, from eye to above arm; cephalic ridges absent; co-ossified skin absent. (31) Dorsal parts of limbs forelmbs shagreened; thugh shagreened with thin foldings, legs shagreened with than foldings and horny spinules; tarsus smooth. (32) Ventral parts of head. chest and lambs smooth: belly wath transversal foldings. (33) No macroglands.
(F) Coloration in alcohol. - (34) Dorsal and lateral parts of head and body; dorsum broun with dark brown spots around the warts; a datk brown band across upper eyehds and head: upper part of snout clearer, light brown: upper part of flank like back: lower part of flank brown with light marbling: loreal region light brown with dark brown bands, tympanic region light brown with a dark brown band underinng tympanic fold, upper lip light brown with three distinct vertical dark brown bars. (35) Dorsal parts of lumbs lorelunbs dorsal part of thigh, leg and foot brown with mdistinct darker bands; posterior part of thigh dark brown
 spunasa and Q acoathophors The table gives the tolai number of spanes on breast and the maximum oumbers of spives ohserved on one arm (eitber lefl or right) in a giver place (ppxmax, prepoliex, umax, finger 1, imax, finger II, ismax, Finser III). Number of specaricns observed is given in brackets. For Q sphiosa only males of size anterval cortespondmg io atult stis in Q. acamthophora were inciuded in the analysis. The Manr-Whincy U kst compares the spene numbers of

Spmac a umber	$1 /$ rouritest	Q criopmaica	Q. stalmagesta	Q \%manke	Q unsationdusa	
breast	$\begin{gathered} 1531+372(7) \\ 47-195 \end{gathered}$	$\begin{gathered} 816+60.7(12) \\ 0-198 \end{gathered}$	$\begin{gathered} 166.9+632(27) \\ 0-288 \end{gathered}$	$\begin{gathered} 130.8 \pm 27.0(54) \\ 88-171 \end{gathered}$	$\begin{gathered} 1395=145.9(6) \\ 0-322 \end{gathered}$	$\begin{gathered} U=39 \\ P=0841 \mathrm{~ns} \end{gathered}$
fpsomex	$\begin{gathered} 177=108(6) \\ 7-35 \end{gathered}$	$9.4+5.2(121)$	$\underset{\substack{2-56}}{-113 \pm 127)}$	$\underset{2-22}{13.8 \pm 5(14)}$	$\begin{gathered} 30.5=141(6) \\ 39-35 \end{gathered}$	$\begin{gathered} U=7 \\ P=0.002+n \end{gathered}$
max	159 (1)	$\begin{gathered} 28=9.3(12) \\ 13-42 \end{gathered}$	$\begin{gathered} 399 \pm 21.5(27) \\ 22-128 \end{gathered}$	$\begin{gathered} 679=15.0114\} \\ 48-.91 \end{gathered}$	$\begin{gathered} 1152 \pm 23.8(0) \\ 96 \cdot 162 \end{gathered}$	$\begin{gathered} U=0 \\ \mu=0,000 \text { vem } \end{gathered}$
${ }^{\text {r mix }}$	$\begin{gathered} 27.6+121(5) \\ 0.51 \end{gathered}$	$\begin{aligned} & 4 \quad 63: 121 \\ & 0.19 \end{aligned}$	$\begin{gathered} 159-824271 \\ 4.45 \end{gathered}$	$\begin{gathered} 21.4 \text { of } 7.4 \mathrm{4}) \\ 13.34 \end{gathered}$	$\begin{gathered} x 5 \times=156(6) \\ 23.49 \end{gathered}$	$\begin{gathered} i \\ p=0002 \mathrm{n} . \mathrm{s} \end{gathered}$
Itamax	$\begin{gathered} 113 \pm 10.4(4) \\ 3-26 \end{gathered}$	$\begin{gathered} 17 \pm 25\{12\} \\ 0.7 \end{gathered}$	$\begin{gathered} 4 * 40(27) \\ y-14 \end{gathered}$	$\begin{gathered} 79 \pm 57(14) \\ 1-17 \end{gathered}$	$\begin{gathered} 155 \pm 156(6) \\ 438 \end{gathered}$	$\begin{gathered} U=32.5 \\ P-0.444 \mathrm{nss} . \end{gathered}$

Table 2. - Siwut-vent longli and tatio or SVL io body measurements for adult males and liemale of Quasypak ateonthophrira

Weasutionents:	Males $n=6$	Femsal $n=1$	Msazicriments	Maks $n=6$	Fstrale $n=1$	Maswinsments	Malos $n=6$	Ferius n I
SVi	$\begin{gathered} 921: 91 \times \\ 79.1017 \end{gathered}$	81.0	INISVL	$\begin{gathered} \text { Uh } \pm 1 \mathrm{xk} \\ 94.96 \end{gathered}$	94	FTLSVL	$\begin{gathered} 2 k x+1027 \\ 274-302 \end{gathered}$	288
HW/SVL	$\begin{gathered} 410 \pm \$ 125 \\ 3 \text { 3/8.470 } \end{gathered}$	355	F.NSVI.	$\begin{gathered} 1 \times 1)+4.7 \\ 53-67 \end{gathered}$	6 6)	[MJSVI,	$\begin{gathered} 83 \pm 164 \\ 77.87 \end{gathered}$	77
4 ILSVL	$\begin{gathered} 3 \times 2+318 \\ 379-367 \end{gathered}$	383	1L/SVL	$\begin{gathered} 1.5 \pm 477 \\ 10 \mathrm{k}-119 \end{gathered}$	112	ITLSVL	$\begin{gathered} 136-775 \\ 121-141 \end{gathered}$	144
MN/SVL	$\begin{gathered} 320+876 \\ 309-374 \end{gathered}$	321	FLLSVL	$\begin{gathered} 252+17 \mathrm{b6} \\ 270.273 \end{gathered}$	256	WIF/SVL	$\begin{gathered} 162 \pm 593 \\ 157.172 \end{gathered}$	159
Mr E/>VL	$\begin{gathered} 263 \pm 1286 \\ 247-240 \end{gathered}$	254	HALSVL	$\begin{gathered} 238 \geq 10.4 \\ 220-248 \end{gathered}$	242	WH1SVL	$\begin{gathered} 14.3 \pm 6.5 \\ 134-1.51 \end{gathered}$	144
MBL/SVL	$\begin{gathered} 165 \pm 10.66 \\ 144-175 \end{gathered}$	170	TrLAVL	$\begin{gathered} 125 \pm 2.77 \\ 120-128 \end{gathered}$	127	WUSVL	$\begin{gathered} 14 x \perp 564 \\ 142-1.57 \end{gathered}$	152
1FESVL	$\begin{gathered} 153 \pm 724 \\ 1 \$ 1-163 \end{gathered}$	14 K	tLisvL	$\begin{gathered} 531 \pm 1407 \\ 513-554 \end{gathered}$	543	WH/VVL	$\begin{gathered} 117 \pm 75 \\ 106-129 \end{gathered}$.27
IBESNL	$\begin{gathered} 268 \pm 1113 \\ 259-248 \\ \hline \end{gathered}$	257	HoLSVL	$\begin{gathered} 523+1729 \\ 502-541 \end{gathered}$	535			

with light brown flecks. (36) Ventral parts: throat and chest brown with whinsh marblung; margin of throdt whitish with brown spots; belly dirty whitish; thigh dirty whute with brown marbling on sides; webbing brown.
(G) Male secondary sex characters. - (37) Large-sized, black nuptial spines present on prepollex and finger I (two separate pads), fingers II and III and chest. Table I gives the numbers of spmes in these places on both hands. (38) Forearms enlarged. (39) Vocal sacs indistinct on throat; parr, rounded openings posterior on mouth floor.
Vouation The other members of the hypodigm are sumilas to the bolophoront in most respects. Variation concerning morphometric measurements is summarized in table 2. The dorsil colour of specimen MNHN 1938.0002 is different as this specimen is not more or less untformly dark brown with indist inet darker spots near warts, but lighter brown with distunct dark brown patches including a band between the eyes. Six out of seven specimens show elongate tine warts etther on lateral part of back or all over back.

Tatic 3 Proncipal componem innilysis usimg marivax rolation with Kaser normalicauion of factor loadrags for adtull males of

A Total varance explaned

${ }^{1} \mathrm{C}$	Inutal eigenvalucs			Rotation sumes of squared loaxings		
	Total	\%\% of variance	Cumularive \%	Total	\%/a of vimarce	Cumulative \%
1	7908	34.382	34.382	5689	24388	2436 k
2	4262	18531	52913	5000	22 J31	46519
3	2651	11524	64437	3513	15273	61792
4	1713	7448	71885	2063	8.968	70760
5	1.041	4.527	76.412	1360	5652	76412

B Rolated componemi matris

	Component						Cemponent				
	1	2	3	4	5		1	2	3	4	5
SVL.	-06676	-0151	0294	-0 50.6	0163	SVL	-0676	- 0151	0294	-0 080	0.163
RHW	0.063	0790	-0.077	-0.2k9	0.319	RIN	0428	-0 152	0271	0711	-00588
RIIL	0404	0804	-0025	0236	0054	REA	-0.045	0362	0.012	0057	0754
RTL	0729	0233	0046	0215	0091	R PL	0850	0569	- 185	0244	O IMA
RMA	0.300	0893	. 00075	0193	0. 116	RTIL	(). 747	0.177	0.2113	0117	-0008
RMJE	0.260	0.891	-0.080	0100	-0040	RFTL	0878	0191	0152	-0.606	-000n7
RM131.	-01.37	0.006	-0025	-0.115	-0.070	RIMT	-0. 10.05	-0. 296	0280	-0100	D0.45
RIFE	0227	0542	0258	-0037	-0005	RITL	0802	0.040	0.220	00030	-0.116
RIBI.	0.488	0517	-007*	$0{ }^{181}$	00 k 7	RWTF	0142	D 010 ks	10876	0076	81948
RILL	0.143	-0.122	-02.7	(1).946	-13018	RWz 1	0218	-0270	1080id	40097	0113
RHAL	0745	0254	00.55	-0.5	0.052	RMI	0003	0 0,6\%	0×31	02297	-2000
Rfol	0927	0050	0191	-0,00	0.210	RWII	0143	-19040	0×65	00028	023.1

Comparsons with clowely related species The new spectes displays the following characters that are diagnostic of the genus Quaspoa (Ohler \& Dubois, 2006) first finger longer than second: tarsal fold present, external fold along fifth toe extending to the base of the tarsus of this toe; spenes on chest of breeding male as a single group, not separated in two lateral patches. Within this genus, the aspect of the dorsal warts in this spectes agrees with the informal group "Quaspecu sensu stricto", as defined above. We provide multivarate analysis and short parwise comparisons with the four other species currently recognized in this group.

Principal component analysis including size-corrected measurements of Quaspata courtorst, Q. eximpmosa, Q mulongensas, Q. spinosa and Q. acanthophora resulis in 5 proncipal components with a loading higher than 1 (tab. 3, fig. 2). They provide a rather good summery of the data, accountung for 76.4% of the total varance (tab.3). The first prencipal component shows a high loading for vartables of lumbs (HAL, TFL, TL, FOL, FTL, ITL), the second principal component mainly describes head shape, having highest loadings from measurements concerning head width (HW) and head length (HL, MN, MBE, MFE); the thord component is dommated by vartables descrabing webbing (WIF, WFF, WI, WII); the fourth component shows high loadıngs for forelımb length (FLL) and internarial distance (1 N), and the fifth for distance of nostril to eye (EN) and length of inner metatarsal tuberele (IMT).

Fig. 2. Results of multivarate morphometrec analysis of adule males of Quantadi couroisi, Q
 factor 1 agamst fichar 2 , right plot of pancupal componem Exctor 3 agaimet factor 4

ANOVA analysh shou that all thee five pronepal components provide signtieant diseriminetion between the five speces (tab. 4). Posthoc test shows parwise stenficant differences for some of these pracipal componenis for all groups studied. PC1 dlows sigmficant discrmimation of Q courtorse from all other species and also to disermanate Q spunse from Q. cwhymona and Q malengenws. PC2 distungushes Q fulongensan from Q evolopmow, Q spmoses and Q acamhmphota, Q cotwrost from Q spmenta and Q acamhophoru, and Q. vonosa from Q pidongenas. PC3 separates Q ewhymona from all other taxal studied. PC4 hows signticant difierence between Q comtors and Q mulongense and Q vmow+ and between Q ev/hymises and Q mongensrs. Thus all speces can be discrimnated from each other by principal component analysus ung morphometric characters, except for the par composed of Q spmoxa and Q actanhophora

The results given above confirm the morphological distinction between Qtaxtpate courfow and the other speces of Quentaut bredly mentioned, but not documented, by Oriar \& Dubons (2006) PC1 allows discrimanatung Q commens itom the other spectes of this group by lower values of the satios to SVL of measurements wheh concern mainly the hands (HAL, TFL), ubia (TL) and feet (FOL, FTL, ITL) PC2 distingushes this species from Q. fotlongenw, Q ymuma and Q acomhophera by ratios to SVL of measurements whach concern the hoad: widh (HW) and length (HL, MN, MFE, MBE) are smatler in Q. couriosi than in Q phowat and Q acomhorphord But Q nulongenss has larger valtes for HW and MBE than Q. colltors. PC 3 allows to disingush Q contioive from Q erdfopmose by ratios concernong the webbing (WTF, WFF, WI, WII) whech are larger in Q chamoss than in Q evhepmemse

Fig 3 Maximum numbers of nuptal spines present on prepollex (p pamax) and firiger 1 (m dax), relative to snout-vent length (SVL) in adult breednge males of Qtareptet yoflusd and Q weamhophorat The value used for each specimen is the maximum number of spmes displayed in eath trogenther on the nght or on the left hand

PC1 distingushes the new species from Q centom by larger ratios of SVL of measurements concerning the hand (HAL. TFL), tibia (TL) and feet (FOL, FTL, ITL) PC2 allows distmetion of these two species by ratios of SVL of measurements concerning the head (HW, HL, MN, MFE, MBE) which are larger for Q acanthophora than for Q cotrtotst PC3 drscimanates the new species from Q ewhypmasa by satios of measurements which concern the webbing (WTF. WFF. WI, WII), which is larger in Q a anthophora than in Q e exhypmosa.

The new species must be considered a stbling species of Quaspaa yphoua (David, 1875) as th does not differ in any of the morphometrical measurements or ratios. Nevertheless thas may be due to the heterogeneity of the sample used in this study and consadered to be Q vonosa. This sample moludes specmmens from varous regoons of Ch.nd (see app. 1) that are morphologically varable and which most probably consist of several upecies. Here we recogmze the Vietnamese population as a distunct species als these apecimens can be distingushed by sexual characters. In many Pani species, adult males show farge black spmes on various parts of the forelimbs. chest and sometmes venter Although wathan a spectes the number of spmes vales according to age and reproductive stage, in seteral cases very similat species can be distungurshed by the number of spanes prewent ta bome locations (Di bons, 1976. Dubors \& Matsut, 1983) Figure 3 shows the numbers of nuptial spunes on the prepollex and finger I for specimens of Q acumthophna and Q spmosia of smilar body sizes. These numbers are significantly different and the numbers of spenes on finger I does not even overlap between the two groups: 14 males of Q yhow have $48-91$ spunes, whereds 6 males of Q a androphora have 96 -162 spines. (tab. I)

Beside these differences in male nuptal spines, Q aconthophora differs from Q spmosa in the aspect of warts on back, which are fine and clongate, whereas they are rounded in Q. spmosa The dorsal warts of Q. spinova bear dark, keratinized spmules. These spunules are absent or small and not keratinized in Q acanthophora. Both species exhbbt keratunized spines on the dorsat surface of shanks.
Q. acanthophora can be distingushed from Q. exthsponosa by adult size, the latter being much smaller. In the sample of the latter spectes that we measured (see app. 1). SVL of 13 of ranges from 40.0 to 69.0 (mean 559 ± 8.40) and that of 11 क ranges from 48.5 to 64.9 (mean 556 ± 4.661 Among our Q atawhophora sample, SVL of 6 है ranges from 79.0 to 101.7 (mean 92.1 ± 918) and that of our single $? 1881.0 \mathrm{~mm}$. If we consider that all the 14 specimens reported by Bocrrlt (1937) were indeed members of this species (which is quite likely, as all samples of Bourret's amphiban collection in the Paris Museum prove to be monospecific, even of they now bear a different nomen, whech suggests that this excellent naturalist had a good "feeling" for species identification), then the extreme values in the Vietnamese species become $89-123$ in δ and $84-104$ in \circ, whech shows no overlap with Q. exilitpp nosa A sungle do specimen of our sample from Vretnam (BMNH 1903.72.26, SVL 61.3 mm) is included in the range of adult males of Q exilspmosa, but, although it shows some spines on prepollex and fingers I and $11,1 t$ is not yet fully adult, as shown by absence of spines on finger III. so we did not include it in ourcalculations of tab. 1 Beside size, these two species are also distinguished by webbing. which is less extended in Q exilspmosar signticant differences between them exist for all four webbing measurements used in this study. Q exi/ispinosacan also be distungushed by its much lower number of nuptial spines on fingers and breast.

The new species can be distinguished from Q fulongensis by the shape of the head, which is distinctly longer and larger in Q acanhophora. Males of Q judongensis also have significantly smaller numbers of spmes on prepollex and fingers I and II.

Finally, the new spectes differs from Q. courtors in head shape. The head is distinctly longer in Q atamfhuphora, which shows more distant nares and eyes. The ubra, foot, toes, hand and fingers are longer in Q acanhophora, and the webbing between toes I[I and IV is less developed in Q courtoist.

ACKNOWLEDGEMENTS

[^0]
Litera iure cited

Anonymous, 1999. - SPSS adanced models 90 . Chicago: SPSS Inc i-xv + 1.497
Avgel, M. F., 1928. - Reptiles et Batractens recuenlits en Indo-Chine par la mission de MM. Delacour et Lowe, Bull, Mus, natm, His, nat., 34: 445-447.
Botlingtr, G A., 1903 - Descriptions of three new batrachans from Tonkin, Abur, Mog nod Hiw, (7) 12(9): 186-188
----- 1920. - A monograph of the South Astan, Papuan, Melanestan, and Australan frogs of the genus Ratad Rec mdan Mus, 20• 1-226.
Bolkret, R, 1937 - Notes herpétologiques sur I'Indochine francalse XIV, Les Batraciens de la collection du Laboratore des Scıences Naturelles de l'Universté Descriptions de quinze espèces ou variétés nouvelles. Annexe Budl. gen. Instr. puht, Decembre 1937, 4 5-56
----- 1942 -Les Buracsens de l'Indochane, Hanos, Instutut oceanographique de 1"Indochune: 1-x + 1-547.4 pl.
Che. J., Hu, J. S , Zhou, W W. Murphy, R W., Paplneuss, T J. Chen, M Y. Ral. D Q. Li, P P \& Zhang, Y, P, 2009 Phylogeny of the Aslan spiny frog trixe Painu (famuly Deroglosidae) sensu Dubots. Mol. PhyL, Evol., 50 59-73.
Davm, A, 1872, - Rapport adressé à MM les Professeurs-Admınıstrateurs du Muséum d'Hsstore Naturelle. Bull nouv Arch Mus, "1871", 7: 75-100
----- 1875 Journal de non tronseme vovage dexplorufon dans t Empme Chanof. Tome 2 Parss, Hachette $[1-\mathrm{mu}]+1.348,1$ map.
De bors. A., 1976 Les Grenouilles du sous-genre Putu du Nepal (famsile Ranidae, genre Ruma) Cuhter népolass, Documens, Parıs, CNRS, 6. 1 -vi + 1-275
----. 2000. Synonymies and related lists in zoology gencral proposals, with examples in herpetology. Dumerihca, 4 (2) 33-98.
---- 2005. Proposed Rules for the ancorporation of nomina of hagher-ranked zoological $14 \times \mathrm{da}$ in the Internatronal Code of Zonlogteal Nomene lature. 1. Somse gencral questions, concepts and terms of brological nomenclature. Zoosystema, 27 (2) 365-426.
Dubors, A \& Marsus. M , 1983. A new species of frog (genus Ratha, subgenus Pad) from western Nepd (Amphbia: Anura). Copest, 1983; 895-901.
Dleoss, A \& Oiller, A , 2000 Systematics of Foprvarya hanmocharis (Gravenhorst. 1829) (Amphbsal. Anura, Randae) and related species. 1. Nomenclatural status and ty pe-specimens of the nommal species Ruma limnocharas Gravenhorst. 1829, Ahtes, 18 (1-2): 15-50
.-.-. 2001. A new genus for an aquatic rame (Amphibla, Anara) from Srı Lanka Aly fes, 19 (2-4): 81-106
---- 2005 Taxonomic notes on the Astan frogs of the tribe Pain (Ratudac. Dicroglossinde). 1. Morphology and synonymy of Chaparana ckrea (Smuth, 1922), with proposal of a new statustical method for testung homogenetty of small samples. Journal of naturai Hasomw, 39 (20) 1759-1778.
Debois, A, Ohler, A \& Bul, S D. 2001. A new genus and specees of Ranidae (Amphbia. Anura) from south-western India Alyues, 19 (2-4) 53-79
Fit, L (ed), 1999 : Allas of amphhtans of Chma Zhengzhou (Chuna). Henan Press of Science and Technology: $[i-11]+1-432$ [ln Chanese]
 Publishang Group, Sichaan Publishing House of Scance \& Technology 1-352 [Jn Chunese]
Frost, D. R., Grant, T., Falyovich, J. Bain, R H, Haas, A., Hadidad, C. F. B., SA, R. O. di, Channing, A., Wilkinकin, M, Donnilian, S. C., Raxworthy, C. J., Camparll. J. A , Blotto, B. L., Molir, P., Drewes, R. C. Nussbaum, R. A , Lynch. J. D, Grien, D. M. \& Whillir. W C., 2006. - The amphibian tree of hife. Budl Amer: Mus. nat. Hist. 297. 1-370.

Jiang, J., Dubols, A., Ohlir, A., Tulitr, A, Chiln, X., Xif, F. \& Stock, M., 2005, Phylogenetic relationshups of the trabe Pamı (Amphibia, Anura. Ranidac) based on partal sequences of mutochondrial 12S and 16S rRNA genes, Zuological Scence, 22: 353-362
Norusis, M J. 1992 SPSS for Wiadons Protentorad Stathastic: Refeates Chicago, SPSS Inc.. $[1-\mathrm{xu}]+$ 1-348
 Ramidac), with comment on some aspects of statistical support to tdxonomy Zodfogect scripfa, 28 (3-4) 269-279.
..... 2006. Phylogenetic relationshups and generk, laxonomic of the tribe Patm (Amphibld, Anura, Ramidac. Dicroglossmac), with dagnoses of two new genera Zoosystema, 28 (3).769-784.
Ohlik. A, Swan, S R. \& Dalitry, J. C., 2002. - A recent survey of the amphibtan launa of the Curdamom Mountams, southwest Camboda wih descriptons of three new species. Raffles Bull Zool, 50 (2): 465-481.
 hors1, 1829) (Amphibla, Anura, Ramidac) and related species. 2 Morphological and molecular valration from the Great Sunda Islands (Sumatra, Java, Borneo) with defintuon of two species. Alyver, 19 (1): 5-28
Zak. J H, 1984 - Brostahsticalamafisa. Second edinon Englewood Cliffs, Prentice-Hall International, Hice $1-\mathrm{xt}+1-718$

Corresponding edthor: Stéphane Grosjean

Appendix 1

LIST OF SPECIMENS EXAMINED AND MEASURED

Beside the hypodigm of the new species described dbove, we examined and measured 133 specmens of the four other speces here referred to the "Quaspok sensu stricto" group. They are currently or were Formerly kept in the following collectuons: American Museurn of Natural History, New York, USA (AMNH): Natural History Museum, London, United Kingdom (BMNH); Chengdu Institute of Brology, Chengdu, Chinel (CIB), Field Muscum of Natural History, Chicago, USA (FMNH), Laboratore de Zoulogle de l'Unversate de Flanoi, Vemam(LZUH), Museum of Comparative Zoology, Harvard, USA (MCZ): Muscum National d'Histoire Naturellc. Parss. France (MNHN), Zoologisches Muscum und Forschungsinstıtut Alexamder Koenig. Bonn, Germany (ZFMK)
 MNHN 19220093, MNHN 19230014, MNHN 1923.0016, MNHN $19230018.0021,9$ 6: MNHN 1923.CH222-0025. 4 ㅇ.

Quatsipeta exhepphasa (Liu \& Hu, 1975) ChisA (A) Fupun Proumce (I)Chungan Xan AMNH 24575-29576, BMAH 19561978, 3 d. AMNH 28892, 18. (2) Dasyun Shan C1B 920037, J d, CIB 920038, 19, (3) Kudtu ZFMK 9723, 1 6; ZFMK 9726, 1 of (B) Hong Kong The Peak BMAH $19561979-81$, BMNH 1974 2122-2124, MNHN 1988.7892. MNHN 1994.4504, 9 ס. BMNH 195619 82, BMNH 1974 2126-2128, MCZ 9423-9424, MNHN 1988 7891, MNHN 19887893,8 \&

Qitersypra mudungensrs (Huang \& Liu, 1985) China Fufum Pronifice (1) Chungan Xan AMNH $28894-28895$, AMNH 28907, AMNH 28909, AMNH 28913, AMNH 28920. AMNH 28922-28926. AMNH 29655-29656, AMNH 29659, AMNH 29661-29662, AMNH 29668, AMNH 29675, AMNH 29677. AMNH 29679-29681. AMNH 29684, AMNH 29745-29748, 27 ס ${ }^{\circ}$: AMNH 28908, AMNH 28910-28912, AMNH 28914-28916, AMNH 29485, AMNH 29660. AMNH 29663-29665, AMNH $29664-29671$, AMNH 29673-29674, AMNH 29676, AMNH 29678, AMNH 29749-29750, CIB 641 1962,

 Amoy AMNH 44396, 1 2, (3) Chungan Xtan, AMNH 05410, AMNH 05412, AMNH 28896, AMNH 29198-29199, AMNH 29480-29481, AMNH 29657. AMNH 29667 , AMNH 29672, 10 尔, AMNH 28906, AMNH 29479, AMNH 29482, AMNH 29658, 4 \&. (4) Futsing XIan AMNH OS414-05415, 2 \& , (5) Kudtun BMNH 1899424 68, ZFMK 9712, ZFMK 9728. 3 8. ZFMK 9724. I P, (6) Pingho BMNH 190710303,1 ㅇ, (7) Yenpmg AMNH 18457, AMNH 28173-28174, AMNH 28177, 4 6. AMNH 0k082. AMNH 18450 . AMAH 18453-18454. AMNH 28172. AMNH 28175 28176.78 (B) Guangdong

Prowne (1) no localaty BMNH 19261027 1, AMNH 24314.2 § $^{\circ}$, AMNH24315, BMNH 192610272. 29. (2) Lo Fau MCZ 11756. 1 出, MCZ 11757. I 2. (C) Heman Prownce Yithang CIB 75 1.006, CIB 75.1 011, 2 \& (D) Jung z Propnce: Panghsiang AMNH 00669, 1 8. ZFMK 9749. 1 \& (E) Zhefung Province: Ningpo BMNH 1854210 39, 1 ㅇ.

Appendix 2

LIST AND DESCRIPTION OF MEASUREMENTS TAKEN ON SPECIMENS STUDIED

Bodv, - SVL, snout vent length
Head. - EL, eye length; EN, dislance from anterior corner of eye to nostril: HL, head lengith (from posterior corner of mandible to up of snout), HW, head width, at the angle of laws; [BE, distance between posterior corners of cyes, IFE, distance between anterior corner of eyes. 1 N . miternarial distance, [UE, minimum distance between upper eyelids; MBE, distance from posterior corner of mandible to posterios comer of eye, MFE, distance from posterior corner of mandible to antenor comer of eye. MN. distance from posterior corner of mandible to nostrat: NS. distance from nostai to tip of snout. SL, distance from antenor corner of eye to up of snout, TYD, maxmum Iympanum dameter, TYE, dislance between tympanum and posterior corncr of eyc; UEW, maximum width of upper eyelid

Forelinh FLL. forelmb length (from clbow to base of outer palmar tubercle), HAL, hand iength (from base of outer palmar tubercle to thp of third fingers. TFL, thurd finger length (from base of first subarticular tubercle)

Hendfonh FL, femur kength (from vent to knee); FOL, foot Iength (from base of antier metatarsal tubercle to up of fourth toe); FTL, fourth toe length (from base of first subarticular tubercle to tup of Fourth toe). IMT, length of inner metatarsal tubercle. ITL, inner toe length, TFOL, length of tarsus and Foot (from base of tarsus to thp of fourth toe). TL. Ibba length, TW, maximum leg wrdth.

Webhugg. FFTF, distance from maximum incurvation of web between fourth and fifih toe to tup of fourth toe, toes beng spread, MTTF, distance from distal edge of metatajbal tubercle to maximum incurvation of web between third and fourth toe, toes being spread, MTFF, distance from distal edge of metalarsal tubercle to maximum incurvation of web between fourth and tifth toe, tees beng spiead, TFTF, distance from maximum incurvation of wab between thrd and fourth toe to tip of fourth toe toes being spread.

[^0]: We are grateful to all the curators who atlowed us to examme speamens under thereare D. R. Frost and C W Myers (AMNH), B T. Clarke (BMNH), L Fer and C. Ye (CIB), A. Resetar and H Vors (FMNH), J. Rosado (MCZ) and W Bohme (ZFMK) We would also like to thank R. Bour and J. Marmayou (MNHN) for their help in the preparation respectively of the tabies and figures for publica1son.

